Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaqua(μ_{3}-pyridine-3,5-dicarboxyl-ato- $\left.\kappa^{3} N: O^{3}: O^{5}\right)$ copper(II)]

Lin Du, Li-Nan Li and Qi-Hua Zhao*

School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
Correspondence e-mail: qhzhao@ynu.edu.cn
Received 25 March 2009; accepted 14 April 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.048 ; w R$ factor $=0.148$; data-to-parameter ratio $=14.3$.

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, was prepared under hydrothermal reaction conditions. In the crystal structure, the $\mathrm{Cu}^{\mathrm{II}}$ cation is located on a twofold rotation axis and is coordinated by two carboxylate O atoms and one N atom from three pyridine-3,5-dicarboxylate (PDA) anions and two water molecules with a distorted trigonal-bipyramidal geometry. The tridentate PDA anion is also located on the twofold rotation axis and bridges the $\mathrm{Cu}^{\mathrm{II}}$ cations to form a two-dimensional polymeric layer. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between layers links the two-dimensional layers into a three-dimensional supramolecular framework.

Related literature

For background, see: Chang et al. (2005); Hou et al. (2004). For related structures, see: Plater et al. (1998); Whitfield et al. (2001).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \quad M_{r}=264.68$

Monoclinic, $C 2 / c$
$a=10.1285$ (16) \AA
$b=12.0669$ (19) \AA
$c=7.2770(11) \AA$
$\beta=101.584(2)^{\circ}$
$V=871.3(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.52 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.23 \times 0.18 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXII 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.588, T_{\text {max }}=0.840$
2751 measured reflections 1003 independent reflections 892 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 70$ parameters
$w R\left(F^{2}\right)=0.148$
$S=1.00$
1003 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.31 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1 W$	$1.964(4)$	$\mathrm{Cu} 1-\mathrm{O} 1$	2.236 (3)
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	2.149 (4)		

Symmetry codes: (i) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $-x+1, y,-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W A \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.85	2.53	$3.377(5)$	178
O1 $^{\mathrm{iv}}-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.85	2.21	$3.052(5)$	171

Symmetry codes: (iii) $x,-y, z-\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the National Natural Science Foundation of China for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2500).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, F., Wang, Z.-M., Sun, H.-L., Gao, S., Wen, G.-H. \& Zhang, X.-X. (2005). Dalton Trans. pp. 2976-2978.
Hou, H.-W., Xie, L.-X., Li, G., Ge, T.-Z., Fan, Y.-T. \& Zhu, Y. (2004). New J. Chem. 28, 191-199.
Plater, M. J., Roberts, J. A. \& Howie, R. A. (1998). J. Chem. Res. pp. 240-241.
Sheldrick, G. M. (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Whitfield, T., Zheng, L.-M., Wang, X.-Q. \& Jacobson, A. J. (2001). Solid State Sci. 3, 829-835.

supplementary materials

Poly[diaqua $\left(\mu_{3}\right.$-pyridine-3,5-dicarboxylato- $\left.\kappa^{3} N: O^{3}: O^{5}\right)$ copper(II)]

L. Du, L.-N. Li and Q.-H. Zhao

Comment

Over the past few years, much progress has been made toward the building of supramolecular structures with metal-organic compounds (Hou et al., 2004). To get designed their intriguing frameworks and properties, an enormous amount of research is being focused in using versatile organic ligands and functional metal ions to construct the novel polymers (Chang et al., 2005). The role of organic carboxylic acid ligand in synthesis such materials are of great interest. Here we report the hydrothermal synthesis and structure characterization of the title compound which is the isomorphism with $\mathrm{Co}^{\text {II }}$ complex reported in the previous literature (Whitfield et al., 2001; Plater et al., 1998).

The title compound crystallizes in space group $C 2 / c$. As illustrated in Fig. 1, in the asymmetric unit of it there is only one crystalographically distinct $\mathrm{Cu}^{\mathrm{II}}$ ions which is coordinated by four O atoms and one N atom with the bond distance $\mathrm{Cu}-\mathrm{O}$ 2.236 (3) and 2.236 (3) \AA and $\mathrm{Cu}-\mathrm{N} 2.149$ (4) \AA. The 3,5-PDA ligand acts as a tridentate ligand and bridges three equivalent Cu atoms with the $\mathrm{Cu} \cdots \mathrm{Cu} 7.877 \AA$. The O 2 atom of each carboxylate group is terminal and oriented to the Cu 1 atom with the $\mathrm{Cu} 1 \cdots \mathrm{O} 2$ distance $2.655 \AA$ which are slightly larger than the $\mathrm{Co}^{\mathrm{II}}$ isomorphism ($\mathrm{Co} \cdots \mathrm{O}_{\mathrm{T}} 2.433 \AA$). A two-dimensional layer structure is thus constructed in the $a b$ plane with openings along the c direction (Fig. 2). Hydrogen bonds are formed between coordinated water molecules and the carboxylate O atoms of adjacent layers (O1W $\cdots \mathrm{O} 13.377$ (5) $\AA, \mathrm{O} 1 \mathrm{~W} \cdots \mathrm{O} 2$ $3.052(5) \AA$) which furtherly connect the two-dimensional layers to a three-dimensional architecture. The shortes distance between Cu ions in the layers is 5.314 (2) \AA.

Experimental

The compound was synthesized by heating a mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(0.25 \mathrm{mmol}, 0.05 \mathrm{~g}), 3,5$-pyridinedicarboxylic acid $(0.25 \mathrm{mmol}, 0.0418 \mathrm{~g}), \mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ in a Teflon-lined autoclave $(25 \mathrm{ml})$ at $150{ }^{\circ} \mathrm{C}$ for 3 d . Green crystals of the title compound appeared after cooling to room temperature.

Refinement

The water H atoms were placed in chemically sensible positions on the basis of hydrogen bonding, and were refined with distance restraint $\mathrm{O}-\mathrm{H}=0.85 \AA$. Other H atoms were placed in calculated positions and were refined in riding mode with $\mathrm{C}-\mathrm{H}=0.93 \AA . U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title complex with displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) $-x+2, y, 1 / 2-z$].

Fig. 2. The crystal packing diagram of the title compound, viewed along the c axis.

Poly[diaqua(μ_{3}-pyridine-3,5-dicarboxylato- $\kappa^{3} N: O^{3}: O^{5}$) copper(II)]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=264.68$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=10.1285$ (16) \AA
$b=12.0669$ (19) \AA
$c=7.2770(11) \AA$
$\beta=101.584(2)^{\circ}$
$V=871.3(2) \AA^{3}$
$Z=4$
$F_{000}=532$
$D_{\mathrm{x}}=2.018 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2266 reflections
$\theta=2.7-28.3^{\circ}$
$\mu=2.52 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, green
$0.23 \times 0.18 \times 0.07 \mathrm{~mm}$

Data collection

Bruker APEXII 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\text {min }}=0.588, T_{\text {max }}=0.840$
2751 measured reflections

1003 independent reflections
892 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-13 \rightarrow 12$
$k=-15 \rightarrow 12$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.148$
$S=1.00$
1003 reflections
70 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.108 P)^{2}+2.2514 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.48$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
Cu1	0.5000	$0.16047(5)$	0.2500	$0.0252(3)$
O1W	$0.4771(4)$	$0.1611(2)$	$-0.0245(5)$	$0.0387(8)$
H1WA	0.5216	0.1161	-0.0782	0.046^{*}
H1WB	0.4226	0.2065	-0.0896	0.046^{*}
O1	$0.6503(3)$	$0.0232(3)$	$0.2667(5)$	$0.0387(8)$
O2	$0.7647(4)$	$0.1761(3)$	$0.2777(7)$	$0.0573(12)$
C1	$0.7562(4)$	$0.0748(4)$	$0.2691(6)$	$0.0289(9)$
C2	$0.8837(3)$	$0.0104(3)$	$0.2610(5)$	$0.0214(7)$
C3	1.0000	$0.0672(4)$	0.2500	$0.0227(10)$
H3A	1.0000	0.1443	0.2500	0.027^{*}
C4	$0.8885(3)$	$-0.1037(3)$	$0.2620(5)$	$0.0227(8)$
H4A	0.8109	-0.1426	0.2713	0.027^{*}
N1	1.0000	$-0.1614(3)$	0.2500	$0.0215(9)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu 1	$0.0257(4)$	$0.0176(4)$	$0.0328(4)$	0.000	$0.0073(3)$	0.000

O1W	$0.049(2)$	$0.0299(18)$	$0.0370(17)$	$0.0036(12)$	$0.0074(15)$	$-0.0021(12)$
O1	$0.0211(15)$	$0.0452(19)$	$0.0507(19)$	$0.0075(12)$	$0.0097(13)$	$-0.0097(15)$
O2	$0.040(2)$	$0.0264(19)$	$0.101(4)$	$0.0149(14)$	$0.005(2)$	$-0.0080(18)$
C1	$0.0189(19)$	$0.029(2)$	$0.036(2)$	$0.0121(15)$	$-0.0006(15)$	$-0.0074(16)$
C2	$0.0162(16)$	$0.0185(17)$	$0.0293(17)$	$0.0049(12)$	$0.0043(14)$	$-0.0009(14)$
C3	$0.022(3)$	$0.013(2)$	$0.032(3)$	0.000	$0.001(2)$	0.000
C4	$0.0135(16)$	$0.0187(18)$	$0.0352(19)$	$-0.0015(12)$	$0.0033(14)$	$-0.0009(14)$
N1	$0.017(2)$	$0.013(2)$	$0.035(2)$	0.000	$0.0062(18)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Cu1-O1W ${ }^{\text {i }}$	1.964 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.518 (5)
Cu1-O1W	1.964 (4)	C2-C4	1.378 (5)
$\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	2.149 (4)	C2-C3	1.379 (4)
$\mathrm{Cu}-\mathrm{O} 1^{\text {i }}$	2.236 (3)	C3-C2 $2^{\text {iii }}$	1.379 (4)
Cu1-O1	2.236 (3)	C3-H3A	0.9300
O1W-H1WA	0.8500	C4-N1	1.344 (4)
O1W-H1WB	0.8500	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{O} 1-\mathrm{C} 1$	1.238 (5)	$\mathrm{N} 1-\mathrm{C} 4{ }^{\text {iii }}$	1.344 (4)
$\mathrm{O} 2-\mathrm{C} 1$	1.226 (5)	$\mathrm{N} 1-\mathrm{Cu} 1^{\text {iv }}$	2.149 (4)
O1W ${ }^{\text {i }}$ - $\mathrm{Cu}-\mathrm{O} 1 \mathrm{~W}$	179.54 (17)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.5 (4)
O1W ${ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	89.77 (8)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.9 (4)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {ii }}$	89.77 (8)	C4-C2-C3	117.8 (3)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1^{\mathrm{i}}$	89.90 (13)	C4-C2-C1	122.8 (3)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Cu}-\mathrm{O} 1^{\mathrm{i}}$	90.44 (13)	C3-C2-C1	119.4 (4)
$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{O}{ }^{\text {i }}$	137.80 (9)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2 \mathrm{iii}$	120.4 (5)
O1Wi $-\mathrm{Cu} 1-\mathrm{O} 1$	90.44 (13)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
O1W-Cu1-O1	89.90 (13)	$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Cu}-\mathrm{O} 1$	137.80 (9)	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 2$	123.2 (3)
$\mathrm{O1}{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 1$	84.40 (18)	N1-C4-H4A	118.4
Cu1-O1W-H1WA	120.0	C2-C4-H4A	118.4
Cu1-O1W-H1WB	120.0	$\mathrm{C} 4{ }^{\text {iiii }}-\mathrm{N} 1-\mathrm{C} 4$	117.6 (4)
H1WA-O1W-H1WB	120.0	$\mathrm{C} 4{ }^{\text {iii }}-\mathrm{N} 1-\mathrm{Cu} 1^{\text {iv }}$	121.2 (2)
C1-O1-Cu1	101.9 (3)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cu} 1^{\text {iv }}$	121.2 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.7 (4)		

Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $x-1 / 2, y+1 / 2, z$; (iii) $-x+2, y,-z+1 / 2$; (iv) $x+1 / 2, y-1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1W—H1WA } \cdots \mathrm{O}^{\mathrm{V}}}^{\mathrm{v}}$	0.85	2.53	$3.377(5)$	178
O1W—H1WB $\cdots \mathrm{O}^{\text {vi }}$	0.85	2.21	$3.052(5)$	171

Symmetry codes: (v) $x,-y, z-1 / 2$; (vi) $x-1 / 2,-y+1 / 2, z-1 / 2$.

Fig. 1

Fig. 2

